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Abstract: For pure gravity in AdS3, Witten has given a recipe for the construction of

holomorphically factorizable partition functions of pure gravity theories with central charge

c = 24k. The partition function was found to be a polynomial in the modular invariant

j-function. We show that the partition function can be obtained instead as a modular sum

which has a more physical interpretation as a sum over geometries. We express both the

j-function and its derivative in terms of such a sum.
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1. Introduction

Partition functions of gravity in three dimensions with a negative cosmological constant are

strongly constrained by modular invariance. Witten recently used this constraint in ref. [1]

to construct partition functions for pure gravity theories which allow a holomorphically

factorized partition function. The constraint of modular invariance is strong enough to

determine a conformal field theory partition function completely from the lowest terms of

its Laurent expansion, as demonstrated earlier in [2]. Ref. [1] uses these lowest terms to

express the partition function as a polynomial in the modular invariant j(τ). However, the

partition function as a polynomial in j(τ) does not display any apparent connection to the

gravity path integral.

We would like to emphasize in this note that each of the partition functions obtained

in ref. [1] can be written as a sum over a coset of the modular group. This sum has a clear

interpretation as a sum over geometries. Ref. [2] first wrote the partition function in this

way for the D1-D5 system, where the expansion was given the name “Farey tail.” In the

past year there have been several applications of these techniques to N = 2 supersymmetric

black holes in four dimensions [3 – 6].

2. Gravity action

Ref. [1] is mainly concerned with pure gravity without a gravitational Chern-Simons term.

This gives rise to a partition function with a holomorphic as well as an anti-holomorphic

dependence. A subclass of partition functions are those which can be holomorphically

factorized. The holomorphic or anti-holomorphic part can be studied independently in

those situations.

In this note, we choose to restrict to theories whose partition functions are holomorphic

by adding an appropriate Chern-Simons term to the standard Einstein-Hilbert action. The
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action is the common Einstein-Hilbert action plus the gravitational Chern-Simons term (in

Euclidean signature) [4]

Sgrav =
1

16πG

∫

d3x
√

g

(

R − 2

l2

)

+
k′

4π

∫

d3xΩ3(ω), (2.1)

where Ω3(ω) is the holomorphic Chern-Simons form,

Ω3(ω) = ω ∧ dω + ω ∧ ω ∧ ω. (2.2)

We introduce a gauge field AL = ω−∗ e/l and AR = ω +∗ e/l. The action in terms of these

variables is

Sgrav =
kL

4π

∫

AL ∧ dAL +
2

3
AL ∧ AL ∧ AL − kR

4π

∫

AR ∧ dAR +
2

3
AR ∧ AR ∧ AR, (2.3)

with kL = l
16G + k′

2 and kR = l
16G − k′

2 . Our aim is to study a holomorphic theory, so we

take kR = 0, which gives kL = l
8G = k. Quantum mechanical consistency requires k to be

an integer.

Gravity in three dimensions has no local degrees of freedom. Different geometries are

determined by globally different identifications. The path integral therefore reduces to a

sum over these identifications. We can determine the action for different geometries. The

action of thermal AdS3 with kR equal to 0 is [7]

S = 2πikτ. (2.4)

The action of the BTZ black hole is

S = −2πik

τ
. (2.5)

The action of the BTZ black hole and thermal AdS3 are related by the transformation

τ → − 1
τ , which is a generator of SL(2, Z). Ref. [2] shows that the geometries of AdS3

are in one-to-one correspondence with the coset Γ∞\SL(2, Z), where Γ∞ is the group of

“translations” given by

(

1 r

0 1

)

. Any element

(

a b

c d

)

∈ Γ∞\SL(2, Z) is determined by a

choice of two relatively prime integers c and d. This set of different geometries comes about

as different choices of the primitive contractible cycle when Euclidean AdS3 is viewed as a

filled torus [2]. The action of these other geometries is given by 2πi
(

aτ+b
cτ+d

)

. The gravity

partition function is now given by

Zk(τ) =
∑

geometries

e−S =
∑

Γ∞\ SL(2,Z)

e−2πik aτ+b
cτ+d M(cτ + d), (2.6)

where M(cτ + d) is some measure factor. Such sums over the modular group are known

as Poincaré series in the mathematical literature. Modding out the translations Γ∞ from

SL(2, Z) is necessary for convergence in such sums.
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3. Conformal field theory partition function

The AdS/CFT correspondence relates the degrees of freedom in the bulk of AdS space

including gravity to a conformal field theory on the boundary. Ref. [1] argues that for pure

gravity the whole partition function can be constructed from knowledge of the ground

state. The ground state energy is given by −k = −c/24, where c is the left moving central

charge. States other than the vacuum and its descendants must be related to black holes,

because gravity in three dimensions has no local degrees of freedom. Primary states other

than the vacuum do not have negative energy because black holes with negative mass do

not exist. Therefore, all polar terms (i.e. q−n, n > 0) in the partition function are the

vacuum and its descendants. The vacuum |0〉 is primary and SL(2, R) invariant and is thus

annihilated by Ln for n ≥ −1. Acting with creation operators L−n, n ≥ 2 generates a

tower of states with partition function

Zsubset,k(τ) = q−k
∞
∏

n=2

1

(1 − qn)
, (3.1)

We gave this partition function the subscript “subset” because it represents only a subset

of the total number of states in the theory. A direct way to see this is that the partition

function is not modular invariant. Ref. [1] constructs a modular invariant partition function

with the required polar behavior with the use of J(τ) = j(τ) − 744, the unique modular

invariant with a polar term q−1 and vanishing q0 term. j(τ) is given by

j(τ) =
1728E4(τ)3

∆(τ)
= q−1 + 744 +

∞
∑

n=1

c(n)qn, (3.2)

where ∆ = η(τ)24, and E4(τ) is the familiar Eisenstein series of weight 4. The partition

function for k = 1 is equal to Z1(τ) = J(τ). The partition functions for larger values of k

become polynomials in J(τ).

The exact Fourier coefficients of j(τ) can be determined with the circle method in-

troduced by Rademacher.1 This method to determine Fourier coefficients was originally

obtained for modular forms of negative weight and with a polar part. It also turned out

to be very useful for the determination of the Fourier coefficients of j(τ) which has weight

0. The coefficients c(n) are given by the infinite sum [9, 10]

c(n) =
2π√

n

∞
∑

m=1

Km(n)

m
I1

(

4π
√

n

m

)

, (3.3)

where Km(n) is the Kloosterman sum

Km(n) =
∑

d∈(Z/mZ)∗

exp

(

2πi(nd + d̄)

m

)

, dd̄ = −1 mod m, (3.4)

and Iν (z) is the Bessel function defined by

Iν(z) =

(

1
2z

)ν

2πi

∫ c+i∞

c−i∞
t−ν−1et+ z2

4t dt, (c > 0,Re(ν) > 0) . (3.5)

1Ref. [8] contains a clear exposition of the circle method applied to the Dedekind η-function.

– 3 –



J
H
E
P
1
0
(
2
0
0
7
)
1
0
3

4. Partition function as a sum over geometries

We would like to relate the conformal field theory partition function to the gravity partition

function (2.6) in a spirit similar to [2]. There exist in fact two sums over integers c and d

that are relatively prime ((c, d) = 1), which are related to the modular invariant J(τ). We

will comment on both.

Refs. [12, 11] give for J(τ)

J(τ) = −12 + lim
K→∞

1

2

∑

|c|≤K

∑

|d|≤K

(c,d)=1

exp 2πi

(

−aτ + b

cτ + d

)

− s(c, d), ad − bc = 1, (4.1)

where s(c, d) is defined as exp 2πi
(

−a
c

)

when c 6= 0 and otherwise 0. The subtraction of

s(c, d) is necessary for convergence. The order of summation over c and d is important in

this case. For every integer pair (c, d), a and b are chosen to satisfy ad − bc = 1. Two

differences with the gravity partition function, eq. (2.6), are the subtraction of s(c, d) and

the dependence on the order of summation of c and d. The sum over (c, d) can still be

interpreted as different choices of the primitive contractible cycle as in eq. (2.6), but the

subtraction of s(c, d) might be harder to interpret from the gravity point of view. The q0

term is not determined by the modular sum, because it is itself a modular form of weight 0.

Similar sums are known for other modular forms with negative (integer) weight, although

they might transform with a shift [11].

A way to cure the discrepancies between the gravity partition function and the sum

in (4.1) is to consider the so-called Farey transform of the partition function. The Farey

transform of the weight zero partition function Zk(τ) is simply the derivative DZk(τ),

where we defined the differential operator

D =
1

2πi

d

dτ
.

Thus the Farey transform of J(τ) is DJ(τ). The inverse transform gives back J(τ) up to

the constant term. Calculation of the Fourier coefficients of the relevant Poincaré series [13]

shows that these are equal to those of the Farey transformed partition function. Ref. [9]

gives the Poincaré series for DJ(τ) as

DJ(τ) = −1

2

∑

Γ∞\SL(2,Z)

exp 2πi
(

−aτ+b
cτ+d

)

(cτ + d)2
. (4.2)

The fact that DJ(τ) is a weight 2 modular form makes a convergent series possible irrespec-

tive of the order of the summation over c and d. The sum is now much more reminiscent of

eq. (2.6), giving it a natural interpretation as a sum over geometries. The measure factor

introduced in eq. (2.6) is determined to be M(cτ + d) = −1
2(cτ + d)−2. In this sense the

sum gives a physical explanation of the modular invariance and shows moreover how the

complete partition function is obtained from knowledge of the polar part of the partition

function.
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The construction of the transformed partition function for larger values of k is straight-

forward now that we know it for k = 1. Take the derivative of Zsubset,k(τ) and perform a

Laurent expansion up to the constant term (similarly to [1]):

DZ̃k(τ) =
∑

−k≤r<0

a(r)qr. (4.3)

Then the derivative of the total partition function is given by

DZ(τ) = −1

2

∑

−k≤r<0

∑

(c,d)=1

a(r)
exp 2πi

(

r aτ+b
cτ+d

)

(cτ + d)2
. (4.4)

Partition functions for larger values of k can also be written as sums analogous to

eq. (4.1). The resulting series have with eq. (4.4) in common, that they are both modular

sums of polar terms. The states corresponding to the polar terms have a physical interpre-

tation as states which are not sufficiently massive to form black holes. The mass of a black

hole is given in the holomorphic case by M = 1
l (L0 − cL

24 ) and a black hole is only formed

when M ≥ 0. Note that in principle, terms qr (r > 0) could be included in the sum. The

sum over these terms would vanish since cusp forms do not exist for weight 0 and 2.

We have given arguments to interpret holomorphic partition functions as sums over

geometries. However, ref. [1] does not consider holomorphic partition functions but holo-

morphic factorizable partition functions. An example of such a partition function is

Z1(τ, τ̄ ) = |J(τ)|2. Application of the sums in eqs. (4.1) or (4.2) leads to a sum over

(c, d) and (c̃, d̃), one pair for the holomorphic side and one for the anti-holomorphic side.2

Only the terms with (c, d) = (c̃, d̃) correspond to classical geometries. This raises the puz-

zle that holomorphically factorizable partition functions require states which are difficult

to interpret classically.

5. Conclusion

We have considered the question of how to construct holomorphic partition functions of

pure gravity in AdS3 for given central charge. We emphasized the fact that the partition

function can be written as a sum over Γ∞\SL(2, Z). We presented two such sums: one for

J(τ), and one for its Farey transform DJ(τ). These sums are easily extended to partition

functions for larger values of the central charge. In this way, the partition functions display

a closer relation with the gravity path integral.

The appearance of the Farey transformed partition function and why it is more rem-

iniscent of the gravity path integral remains mysterious (see also [2, 6]). A second puzzle

is the contribution of geometries without a proper classical realization to holomorphically

factorizable partition functions.

Acknowledgments

I would like to thank Erik Verlinde for encouragement and stimulating discussions. This

research is supported by the Foundation of Fundamental Research on Matter (FOM).

2I would like to thank E. Witten and the referee for bringing this point to my attention.

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
1
0
3

References

[1] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359.

[2] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole farey tail,

hep-th/0005003.

[3] D. Gaiotto, A. Strominger and X. Yin, The M5-brane elliptic genus: modularity and BPS

states, JHEP 08 (2007) 070 [hep-th/0607010].

[4] P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01

(2007) 002 [hep-th/0607138].

[5] J. de Boer, M.C.N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A farey tail for

attractor black holes, JHEP 11 (2006) 024 [hep-th/0608059].

[6] F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, hep-th/0702146.

[7] J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle,

JHEP 12 (1998) 005 [hep-th/9804085].

[8] T.M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag

(1976).
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